\(\int \frac {x^2 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{d+e x} \, dx\) [438]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 251 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 c^2 d^2 e^3}-\frac {\left (c d^2-a e^2\right ) \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{7/2}} \]

[Out]

-1/16*(-a*e^2+c*d^2)*(a^2*e^4+2*a*c*d^2*e^2+5*c^2*d^4)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(
1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/c^(5/2)/d^(5/2)/e^(7/2)+1/3*x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2
)^(1/2)/e+1/24*((-3*a*e^2+5*c*d^2)*(a*e^2+3*c*d^2)-2*c*d*e*(-a*e^2+5*c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(1/2)/c^2/d^2/e^3

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {865, 846, 793, 635, 212} \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=-\frac {\left (c d^2-a e^2\right ) \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{7/2}}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )-2 c d e x \left (5 c d^2-a e^2\right )\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{24 c^2 d^2 e^3}+\frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e} \]

[In]

Int[(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*e) + (((5*c*d^2 - 3*a*e^2)*(3*c*d^2 + a*e^2) - 2*c*d*e*(5
*c*d^2 - a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(24*c^2*d^2*e^3) - ((c*d^2 - a*e^2)*(5*c^2*d^4
 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2
 + a*e^2)*x + c*d*e*x^2])])/(16*c^(5/2)*d^(5/2)*e^(7/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 793

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p +
3))), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(
a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 846

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
 - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
 + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 865

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + c*(x/e))^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^2 (a e+c d x)}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\int \frac {x \left (-2 a c d^2 e-\frac {1}{2} c d \left (5 c d^2-a e^2\right ) x\right )}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 c d e} \\ & = \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 c^2 d^2 e^3}-\frac {\left (\left (c d^2-a e^2\right ) \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 c^2 d^2 e^3} \\ & = \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 c^2 d^2 e^3}-\frac {\left (\left (c d^2-a e^2\right ) \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^2 d^2 e^3} \\ & = \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 c^2 d^2 e^3}-\frac {\left (c d^2-a e^2\right ) \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{7/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 10.56 (sec) , antiderivative size = 245, normalized size of antiderivative = 0.98 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (-3 a^2 e^4+2 a c d e^2 (-2 d+e x)+c^2 d^2 \left (15 d^2-10 d e x+8 e^2 x^2\right )\right )-\frac {3 \sqrt {c d} \sqrt {c d^2-a e^2} \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \text {arcsinh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d} \sqrt {c d^2-a e^2}}\right )}{\sqrt {a e+c d x} \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}}\right )}{24 c^{5/2} d^{5/2} e^{7/2}} \]

[In]

Integrate[(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-3*a^2*e^4 + 2*a*c*d*e^2*(-2*d + e*x) + c^2*d^2*(15*d
^2 - 10*d*e*x + 8*e^2*x^2)) - (3*Sqrt[c*d]*Sqrt[c*d^2 - a*e^2]*(5*c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcSinh[(
Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d +
 e*x))/(c*d^2 - a*e^2)])))/(24*c^(5/2)*d^(5/2)*e^(7/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(511\) vs. \(2(225)=450\).

Time = 0.66 (sec) , antiderivative size = 512, normalized size of antiderivative = 2.04

method result size
default \(\frac {\frac {{\left (a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}\right )}^{\frac {3}{2}}}{3 c d e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{2 c d e}}{e}-\frac {d \left (\frac {\left (2 c d e x +e^{2} a +c \,d^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{8 c d e \sqrt {c d e}}\right )}{e^{2}}+\frac {d^{2} \left (\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (e^{2} a -c \,d^{2}\right ) \ln \left (\frac {\frac {e^{2} a}{2}-\frac {c \,d^{2}}{2}+c d e \left (x +\frac {d}{e}\right )}{\sqrt {c d e}}+\sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {c d e}}\right )}{e^{3}}\) \(512\)

[In]

int(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/c/d/e-1/2*(a*e^2+c*d^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/
d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+
c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)))-d/e^2*(1/4*(2*c*d*e*x+a*e^2+c*
d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2
*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+d^2/e^3*((c*d*e*(x+d/e)^
2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*e^2*a-1/2*c*d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(
x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 536, normalized size of antiderivative = 2.14 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\left [-\frac {3 \, {\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 4 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, c^{3} d^{3} e^{4}}, \frac {3 \, {\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 4 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, c^{3} d^{3} e^{4}}\right ] \]

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/96*(3*(5*c^3*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4
+ 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d
*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(8*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 4*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 - 2
*(5*c^3*d^4*e^2 - a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4), 1/48*(3*(5*c^3
*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x))
+ 2*(8*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 4*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 - 2*(5*c^3*d^4*e^2 - a*c^2*d^2*e^4)*x)
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4)]

Sympy [F]

\[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x^{2} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \]

[In]

integrate(x**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

Integral(x**2*sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.89 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {1}{24} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, x {\left (\frac {4 \, x}{e} - \frac {5 \, c^{2} d^{3} e - a c d e^{3}}{c^{2} d^{2} e^{3}}\right )} + \frac {15 \, c^{2} d^{4} - 4 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}}{c^{2} d^{2} e^{3}}\right )} + \frac {{\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{16 \, \sqrt {c d e} c^{2} d^{2} e^{3}} \]

[In]

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*x*(4*x/e - (5*c^2*d^3*e - a*c*d*e^3)/(c^2*d^2*e^3)) + (15*
c^2*d^4 - 4*a*c*d^2*e^2 - 3*a^2*e^4)/(c^2*d^2*e^3)) + 1/16*(5*c^3*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*
e^6)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/(s
qrt(c*d*e)*c^2*d^2*e^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{d+e\,x} \,d x \]

[In]

int((x^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x),x)

[Out]

int((x^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x), x)